The principles of science (v7.2)

Every day, we see and hear numerous statements about how things work – about how things relate to each other. Science is normally thought of as the way of conduct that provides certainty about such relationships. However, both beliefs and unsubstantiated statements can often be seen – also within science.

So, what are the principles of science then? It is hard to say. One might imagine that a set of principles for science is already readily available. I dare say that it isn´t. It seems that many think they have some kind of understanding about the principles of science, but a well-defined and compact set of principles does not seem to be freely and readily available, at least not on the internet.

This seem to be supported by the following quote from a book by National Academy of Sciences: “The basic and particular principles that guide scientific research practices exist primarily in an unwritten code of ethics. Although some have proposed that these principles should be written down and formalized, the principles and traditions of science are, for the most part, conveyed to successive generations of scientists through example, discussion, and informal education.” Ref.: Responsible Science, Volume I: Ensuring the Integrity of the Research Process; Panel on Scientific Responsibility and the Conduct of Research” http://www.nap.edu/catalog/1864.html

Many controversies about scientific issues indicate that it would be beneficial to have these basic principles defined. However, it is not obvious what these principles are.

This work is based on the basic assumption that a set principles can be defined and is nothing less than a bold attempt to provide a set of fundamental principles for science. Principles that can be used to distinguish knowledge from beliefs – or to recognise “fake news” or “alternative facts” for that sake.

The principles provided here have not been taken out of thin air. Some principles may be recognised as sound scientific principles that are phrased in various ways in various sources. Other principles are distilled from existing international standards. However, this is an original work that provides a unique set of well-defined principles for science.

This work itself, or parts thereof can be proven wrong simply by identifying a flaw, a logically invalid principle or definition, a concept known to be true that can not be put forward in a way that complies with all relevant principles or a concept known to be wrong that complies with all relevant principles.

The first section of this work is self-contained and provides principles and associated definitions. The reason why most terms are defined is that there are many different dictionaries available at the fingertips of any reader. This work cannot rely on undefined terms or terms having various definitions, as even slightly different definitions will change the conclusions that can be drawn on basis of this work and even make it inconsistent or logically invalid.

The second part of this work provides the essential arguments for each principle.

If you like this set of principles – hit the “like” button and spread the word about this work. If you find something wrong, have an idea about an improvement or just want to discuss a particular aspect – tell me about it by leaving a comment, preferably at the original site.

This work may be reproduced on the condition that the principles are not detached from the definitions and that the reproduction includes a link to the original site:
https://rulesofscience.wordpress.com

1 The principles of science

§1 A scientific argument consists of clearly stated premises, inferences and conclusions.

§2 A scientific premise is verifiable. Premises and their sources are identified and readily available for independent verification.

§3 A scientific inference is logically valid.

§4 A scientific conclusion is deduced by application of axioms, definitions and theorems or measured properties and scientific concepts that have already been verified or validated.

§5 A scientific concept consists of statements that are logically valid conclusions deduced from premises that are themselves logically valid conclusions, axioms, definitions or theorems.

§6 A scientific concept is well-defined and has a well-defined capability of prediction within a well-defined context.

§7 A scientific concept can only be validated by comparison of predictions deduced from that concept with measurement results. Whenever predictions differ from measurement results, by more than the combined uncertainty of the measurement results and the claimed capability of the concept,  there must be something wrong with the concept – or the test of it.

§8 A scientific concept can only be referred to as validated for the context covered by the validating tests.

§9 A scientific statement is based on verifiable data. Data and precise information about how that data was obtained are readily available for independent verification. Whenever data are corrected or disregarded, both uncorrected and corrected data are provided together with a scientific argument for the correction.

§10 A scientific measurement report contains traceable values, units and stated uncertainty for well-defined measurands in a well-defined context.

§11 A scientific prediction report contains values, units and claimed capability for well-defined measurands in a well-defined context.

https://rulesofscience.wordpress.com/2017/01/24/the-principles-of-science-v7-1/

Definitions for The principles of science

 

argument: a conclusion inferred from a set of premises 
attribute: a characteristic used to describe or define a thing
axiom: a statement that is self-evidently true and accepted as a true starting point for further deduction
calibration: comparison of a measurement with a reference having a known uncertainty
capability: maximum difference between predictions and measurements
clearly stated: stated in a manner that is only open to the intended interpretation
comparison: quantification of the difference between
concept: any expression of a relationship between two or more measurands
conclusion: a statement inferred from one or more premises
context: a set of those things that have an influence on an observed, measured or predicted value
contradict: demonstrate that a statement is not true
correct: replace a measured or predicted value with another value
data: measured or predicted value of a measurand or relationship between measurands
deduction: a combination of premises into a conclusion by means of mathematics and logic
definition: a set of distinguishing characteristics
disregard: remove a value from a series of data that is used as a premise
document: an identified collection of words, numbers and symbols
false: a statement that can be contradicted by a sound argument within the defined context
hypothesis: a propounded statement or concept that has not been verified or validated
independent: not under influence of the party propounding a concept
inference: logical connection between premises and conclusion
logically valid: the truth of the premises guarantees the truth of the conclusion – it is impossible for the premises to be true and the conclusion nevertheless to be false.
mathematics: a consistent and logically valid system of symbols and operations on these symbols
measurand: well-defined property that can be observed or quantified by a measurement
measure: quantify a measurand by establishing the ratio between that measurand and a reference that serves as a unit – and assign a number representing that ratio, and the associated unit, to that measurand
measurement (result): a measurand quantified by a value and an associated unit
nature: any thing and any relation between things
observe: conclude if an attribute is in accordance with a definition
precise information: sufficient for replication by an independent person using equal tools
prediction: quantification of a measurand without any foreknowledge about an eventual measurement result
premise: a statement used to infer a conclusion
property: an attribute that can be observed or measured
prove: demonstrate the truth of a statement by means of axiom, definitions and theorems.
readily available: available without further request
reference: a measurement device or procedure that has an unbroken chain of calibrations to the definition of the unit
relationship: a quantified change in measurand A is followed by a quantified change in measurand B
sound: a conclusion that is logically valid and based on true premises
source: identified document containing a premise
statement: a logical proposition that can be either true or false within the defined context
test: an activity that can verify or validate
theorem: a conclusion that has been proven and that can now be used as the basis of other proofs.
thing: whatever that can be defined
traceable: having an unbroken chain of calibrations to the definition of the unit
true: a statement that can not be contradicted by a sound argument within the defined context
uncertainty: quantified accuracy
unit: a well-defined quantity that has one unique value
validate: demonstrate the truth of a concept within a well-defined and applicable context
verify: demonstrate the truth of
wrong: not true

 

2 Arguments for the principles of science

Introduction

It should be noted that the intention with this work has been to provide the fundamental principles of science in a comprehensive but still compact manner. A significant effort has been invested in limiting the amount of text to an essential minimum.

Regarding §1 A scientific argument consists of clearly stated premises, inferences and conclusions.

An essential characteristic of science is that arguments should be independently verifiable. The constituents of an argument should be recognisable in §1 and the associated definitions. Within science, it should be possible to verify that an argument is sound – that the argument is based on true premises, and that the truth of the premises guarantees the truth of the conclusion.

To be able to verify that an argument is sound, the intended interpretation must be clear.  An unclear argument can not be verified by an independent party.

 

Regarding §2 A scientific premise is verifiable. Premises and their sources are identified and readily available for independent verification.

The intention with §2 is to emphasise that a premise can only be verified if it is properly referred to. Both the premise itself and the source containing the premise should be identified, and the source should be available for verification.

If a premise can not be verified, the premise can only be accepted on the basis of a belief in the proponent of the argument.

Regarding §3 A scientific inference is logically valid.

If an inference is not logically valid, it follows from the definitions that the truth of the premises does not guarantee the truth of the conclusion – it is possible for the premises to be true and the conclusion nevertheless to be false. Hence, the conclusion can then only be accepted as true on the basis of some kind of belief.

Regarding §4 A scientific conclusion is deduced by application of axioms, definitions, theorems or measured properties and scientific concepts that have already been verified or validated.

A scientific conclusion may be applied in an argument for or against a propounded statement or concept, or as part of a scientific concept.

Any collection of words, numbers and symbols is an abstract construction that may or may not correspond with observations and measurements of nature.

In the case of science, this collection of words, numbers and symbols will have to be a   logically valid construction – a construction where the truth of the premises guarantees the truth of the conclusion.

A logically valid construction that ends up in a conclusion has to be based on something. In the case of abstract constructions like mathematics, the basis for the construction will be axioms, definitions and theorems.

In the case of constructions intended to provide a correspondence between an abstract construction and observations and measurements of nature (like physics), the axioms, definitions and theorems may be about nature or about the correspondence between an abstract construction and nature. In this case, the construction may also be based on observed or measured properties or scientific concepts that have already been verified or validated.

As an example, it will normally be acceptable to base a scientific conclusion on a concept like Newton´s laws of motion within their validated context, or on a measured property like the gravitational acceleration (approximately 9,8 m/s^2 on earth). The application will dictate how accurate that measured property will have to be – whether 9,8 m/s^2 is sufficiently accurate or if a more accurate value is required.

Regarding §5 A scientific concept consists of statements that are logically valid conclusions deduced from premises that are themselves logically valid conclusions, axioms, definitions or theorems.

The intention with this principle is to emphasise that the entire concept will have to be a logically valid construction that has a well-defined and true basis. If there are any logical fallacies in a construction, the result will be that the concept can only be accepted as true on the basis of some kind of belief.

A concept that is under construction, or has not yet been validated, should be clearly identified as an hypothesis to avoid premature application of the concept.

Regarding §6 A scientific concept is well-defined and has a well-defined capability of prediction within a well-defined context.

To facilitate independent judgement, the concept itself will have to be well-defined. If the concept is not well-defined it can not be tested by an independent party. The independent party would not know what to test and how to test it. If a concept is not tested by an independent party, the concept can only be accepted on basis of a belief in the party propounding a concept.

Concepts are only valid within a context. One example of this is classical physics: “Beginning at the atomic level and lower, the laws of classical physics break down and generally do not provide a correct description of nature.” (Ref.: Wikipedia; classical physics; at the date of publishing this work). To facilitate judgement of a concept by an independent party, the context for which the concept is claimed to work well will have to be defined by the party propounding a concept.

Many concepts got a capability of prediction of the value of a measurand, but not exactly. A concept may have a capability of prediction with some uncertainty. To facilitate judgement of a concept, the capability of the concept will have to defined by the party propounding that concept. If not, there is no way to tell if the concept performs as claimed or not, or whether it is useful for an intended use or not.

Regarding §7 A scientific concept can only be validated by comparison of predictions deduced from that concept with measurement results. Whenever predictions differ from measurement results, by more than the combined uncertainty of the measurement results and the claimed capability of the concept,  there must be something wrong with the concept – or the test of it.

A concept may or may not correspond with observations and measurements of nature. Within many areas of human expressions, like in politics, religion, love, hate, humour or whatever; it may not matter if an expression corresponds with nature. Within science, on the other hand, an essential characteristic of a useful scientific concept is that of a correspondence between predictions of that concept and observations and measurements.

Even if a concept complies with §1 to §6, there is no guarantee that the concept is a complete construction that also provides a correspondence between that concept and observations and measurements of nature. We can not know for sure that the concept is complete, that there are no errors in it, that the concept is correctly constructed or that the concept actually has the claimed capability of prediction without testing it.

The only way to know that a concept performs within the claimed capability, within a defined context, is to deduce predictions from that concept, measure nature within the same context and see if the difference between predictions and measurements is within the claimed capability of the concept.

In judging the results of the test, the uncertainty of the measurements will have to be taken into account. Repeated tests are required to ensure that the results are representative.

It is worth mentioning that there are may ways to adjust a concept to match measurements. Many kinds of curve fit, parameterisation, change of definitions or addition of hypotheses can be used to adjust a concept to match observations and measurements.

The problem with adjustments, however, is that adjustment of a concept to match measurements may hide that the concept does not have the claimed capability of prediction. Some concepts may need some kind of general calibration and adjustment, but if a concept really has the claimed capability to predict the value of a measurand, there should be no reason to adjust the concept to a particular test.

The reason why it is so useful to compare predictions with measurements is that all kinds of adjustments of the concept to match measurements are logically impossible. It is impossible to adjust a concept to match something that is not yet known. Prediction excludes all kinds of adjustments of the concept to match the measured values.

There may be other ways to validate a concept, but all other ways leave a possibility that the concept has been adjusted to match measurements. Hence all other ways to validate a concept should also be followed by a scientific argument proving that the concept has not been adjusted to match the measurements of that particular test.  Without such proof, the concept can only be accepted on the basis of a belief that the concept has not been adjusted particularly for that test.

Regarding §8 A scientific concept can only be referred to as validated for the context covered by the validating tests.

A test is performed within a context. Obviously, the test is only valid for that context.  As a principle, the concept can only be referred to as validated for the context covered by the validating test.

It may be that interpolation or extrapolation can not be contradicted by a sound argument, Gravity may be an example of that, but that is not normally the situation.  However, the party propounding a concept might be able to put forward a scientific argument for the validity of interpolation or extrapolation, and it might be that no opponents are able to put forward a counterargument. Anyhow, extrapolation or interpolation should be followed by a scientific argument.

Regarding §9 A scientific statement is based on verifiable data. Data and precise information about how that data was obtained are readily available for independent verification. Whenever data are corrected or disregarded, both uncorrected and corrected data are provided together with a scientific argument for the correction.

Whenever a statement is based on observations or measured or predicted values, the data should be readily available for independent verification. If not, the statement can only be accepted on the basis of a belief.

There might be errors in the experiment that produced the data. Such errors might be revealed by an investigation into how the data was obtained or by an independent replication of the experiment.

Anyhow, the statement can only be verified if precise information about how that data was obtained is readily available. If not, the statement can only be accepted on the basis of a belief in the proponent of the statement.

Finally, it can be totally irresistible to disregard or correct data. There may be scientific arguments for doing that. If so, those arguments should be verifiable. If not, data should not be corrected, discarded or disregarded.

Regarding §10 A scientific measurement report contains traceable values, units and stated uncertainty for well-defined measurands in a well-defined context.

Obviously, a measurand will have to be well-defined, how else can anybody know exactly what has actually been measured? Also obviously, the measurement result will also have to be provided as a value and the associated unit. A value without a unit is meaningless.

By using a unit in accordance with the International System of Units, the unit will already be well-defined. If the unit is a non-standard unit or even a hitherto unknown unit, the unit will have to be properly defined in the measurement report.

Whenever a measurement is performed by some kind of measurement device, the measurement device should be traceable by an unbroken chain of calibrations to the definition of the unit. Without a traceable measurement device, there is no way to know if the measurement is accurate, there is no way to quantify the uncertainty of the measurement.

Regarding the uncertainty of a measurement, the introduction to the following freely and readily available guideline: “Guide to the expression of uncertainty in measurement;  JCGM 100:2008 explains why quantification of uncertainty is essential: “When reporting the result of a measurement of a physical quantity, it is obligatory that some quantitative indication of the quality of the result be given so that those who use it can assess its reliability. Without such an indication, measurement results cannot be compared, either among themselves or with reference values given in a specification or standard.”

For the principles provided here, it is regarded sufficient to state that it is essential that the uncertainty of a measurement is provided in the measurement report. Obviously, there are benefits in providing the uncertainty in accordance with an international standard or guideline. By not providing the uncertainty in accordance with a standard or guideline, there is a risk that the measurement report is regarded insufficient and that no judgements can be made on basis of that report.

Finally, it is also essential that the context for the measurement is well-defined. All the things that are known to have an influence on the value of the measurand should be identified.

(This principle has been based on section 7.2.1 in the freely available international guideline: JCGM 100:2008; GUM 1995 with minor corrections; Evaluation of measurement data — Guide to the expression of uncertainty in measurement.)

Regarding §11 A scientific prediction report contains values, units and claimed capability for well-defined measurands in a well-defined context.

This principle is an analogue to §10 about measurement reports, this should be no surprise since predictions are supposed to be comparable with measurements. A claimed capability may be expressed and documented in the same way as the uncertainty of a measurement.

This work can only be reproduced on the condition that the original source is identified by a link to:  https://rulesofscience.wordpress.com

 

 

Advertisements

12 thoughts on “The principles of science (v7.2)

  1. house had a power failure- one of the mains fried. getting everything back up involved 100 ft of trench to find the fault. only the LED lightbulbs and the uWave died in the surge, tho. it could have been much worse.
    i’ll check back soon

    Like

    • Hi, Gnomish 🙂

      I hope you got everything back up and running after the power failure. I imagine, (by inductivism LOL), that there must have been lightning involved in a power surge that caused failure on power cables. That must have been a powerful strike.

      Anyhow, you may find that I have imported all earlier posts, that were essential to this work, to this site. I somehow know that the history behind a piece of work does not matter. However, I have become a bit sentimental about this work and wanted to collect it all. In particular, I wanted to include your comments and our discussions – that I really appreciate a lot.

      I have now posted a new last version:
      https://rulesofscience.wordpress.com/2017/02/16/the-principles-of-science-v7-3/
      The only thing changed is a new section 3, and a paragraph in the introduction referring to it.

      You may find pleasure in seeing that I have now added a section 3 to this work. A section where I criticise Karl Popper´s perspective of truth, and his view that definitions are unimportant.

      I think I kind of agree with you, that the principles and the definition – logos – would and should do fine on their own – without verbiage. However, there is something with: ethos, pathos and logos.

      That is, in a way, the feedback I got from one of the professors I asked to consider version “4.1” and “4.1 in a nutshell”. He advised me that the work should contain a criticism of something existing. And that exemplifies what I think might be hard to believe, but something I still think is true – something like this work doesn´t exist (or is not readily available on the internet)!

      Anyhow, I have now brought forward the argument in the introduction that the “The basic and particular principles that guide scientific research practices exist primarily in an unwritten code of ethics”. Further, I imagine that many would immediately attempt to refer to Karl Popper. That is why I really needed to include a criticism of Karl Popper´s view on truth and definitions in section 3.

      I´m starting to feel content with this work now – I can read through it without really feeling any kind of discontent.

      Another thing is that I cannot avoid mentioning your contribution to it. I hope you don´t mind that your artist name, or should I say logist name, “Gnomish” is associated with it.

      Like

      • cremate popper and scatter the ashes.
        the world is a better place for it.
        my private pleasure is to end a chapter with
        “aw, shucks, twarn’t nothin'”
        and it thrrrrrills me to the marrrrrrow to hear: ‘who was that masked man?’ as i ride off.
        howbow dah?

        Like

      • to simplify almost to the point of distortion, all matters of ethics can be resolved by application of 2 concepts: ownership and damage.
        merely by implication you get:
        if it ain’t yours, don’t mess with it and if there’s no damage, there’s no claim.

        because the practice of ethics presumes morality which presumes choice, there are a few psychopathological attacks based on ‘ethic without choice’ called, as a class ‘life boat ethic’ gambits.

        you get good at whatever you practice. you’ll see any remaining foggy mysteries clear right up when you examine them.

        Like

    • It took a lot more than two months – we started our discussions in August 2016.
      I started to reconstruct “10 theorems for ideas about how things work” back in September 2016.
      In average, every sentence in the finished product has taken me several hours of work.

      I´m kind of glad I didn´t know how much it would take to complete this quest.

      Like

      • how long did it take popper to learn to crawl and make a career of crawling?
        you remember popper? way the hell back there on that little island of stupid?
        it was so long ago… a semester, at least…

        Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s